Due to its position as the principal connector of the major
ocean basins, the Southern Ocean strongly impacts climate,
sea level, biogeochemical cycles and biological productivity
on a global scale. The Southern Ocean influences the global
distribution and movement of heat and carbon (e.g. Rintoul
et al., 2001), and it features a vigorous overturning circulation that drives deep-water carbon and nutrients to the surface and draws down anthropogenic carbon from the atmosphere, with implications for global climate change and large-scale productivity (Sarmiento et al., 2004; le Quere et al., 2007; Meredith et al., 2012). The Southern Ocean exerts a strong influence on sea levels via melting of glacial ice (Rignot and Jacobs, 2002; Rignot et al., 2011), and it encompasses a sea-ice system that provides an important habitat for marine organisms, and which influences surface albedo and air-sea gas and heat exchange (Thomas and Dieckmann, 2002). The Southern Ocean also includes some of the most productive and
vulnerable marine ecosystems on Earth, many of which support
economically important species.
Details
Publication status:
Published
Author(s):
Authors: Newman, Louise, Rintoul, Steve, Meredith, Michael P. ORCID record for Michael P. Meredith, Fahrbach, Eberhard, Gunn, John, Sparrow, Mike, Wadley, Victoria, Speer, Kevin, Hofmann, Eileen, Summerhayes, Colin, Urban, Ed, Bellerby, Richard