The consolidation and bond strength of rafted sea ice

The consolidation and bond strength of rafted sea ice were investigated through a series of experiments undertaken in the Ice Physics Laboratory at the UCL. To simulate a section of rafted sea ice, blocks of laboratory grown saline ice were stacked in an insulated tank with spacers between adjacent blocks to allow saline water to flood in. The rate of consolidation was then monitored using a combination of temperature readings recorded in the ice and liquid layer, salinity measurements of the liquid layer, and cores taken at specific times of interest. Two states of consolidation were observed: thermodynamic consolidation where the ice blocks were physically bonded but the bond strength was weak, and mechanical consolidation where the bond had reached full strength. Results showed that the rafted ice had physically bonded in less than a day, however it took many more days (6 to 30 depending on the environmental conditions) for the bond to reach maximum strength. Increasing the thickness of the ice, the salinity of the water and the inter-block gap size all increased the consolidation time. Once consolidated, ice cores were taken and sheared using the asymmetric four-point bending method to measure the strength of the bond between the ice blocks. These were then compared to the shear strength of solid ice blocks simulating level sea ice. Our results show that the shear strength of the bond between the rafted ice blocks is about 30% weaker than that of level ice.

Details

Publication status:
Published
Author(s):
Authors: Bailey, Eleanor, Sammonds, P.R., Feltham, Daniel

Date:
1 January, 2012
Journal/Source:
Cold Regions Science and Technology / 83-84
Page(s):
37-48
Link to published article:
https://doi.org/10.1016/j.coldregions.2012.06.002