Possible solar wind effect on the Northern Annular Mode and northern hemispheric circulation during winter and spring
Statistically measurable responses of atmospheric circulation to solar wind dynamic pressure are found in the Northern Hemisphere (NH) zonal-mean zonal wind and
temperature, and on the Northern Annular Mode (NAM) in winter and spring. When December to January solar wind dynamic pressure (PswDJ) is high, the circulation response
is marked by a stronger polar vortex and weaker sub-tropical jet in the upper to middle stratosphere. As the winter progresses, the Arctic becomes colder and the jet anomalies shift poleward and downward. In spring, the polar stratosphere becomes anomalously warmer. At solar maxima, significant positive correlations are found between PswDJ and the middle to late winter NAM all the way from the surface to 20 hPa, implying a strengthened polar vortex, reduced Brewer–Dobson circulation and enhanced stratosphere-troposphere coupling. The combined effect of high solar UV irradiance and high solar wind dynamic pressure in the NH middle to late winter is enhanced westerlies in the extratropics and weaker westerlies in the subtropics, indicating that more planetary waves are refracted toward the equator. At solar minima, there is no correlation in the NH winter but negative correlations between PswDJ and the NAM are
found only in the stratosphere during spring. These results suggest possible multiple solar inputs that may cause refraction/redistribution of upward wave propagation and result in projecting the solar wind signals onto the NAM. The route by which the effects of solar wind forcing might propagate to the lower atmosphere is yet to be understood.
Details
Publication status:
Published
Author(s):
Authors: Lu, Hua ORCID record for Hua Lu, Jarvis, Martin J., Hibbins, Robert E. ORCID record for Robert E. Hibbins