Petrogenesis of boninites in the Ordovician Ballantrae Complex ophiolite, southwestern Scotland
Primitive lava and hyaloclastite with unusual, highly refractory compositions, form part of the Early Ordovician Balcreuchan Group within the ophiolitic Ballantrae Complex, southwestern Scotland. They are identified as likely high-Ca boninites on the basis of new XRF and INAA results and are the first unambiguous boninites to be discovered in the British Isles. The boninites are interbedded with low-Ti tholeiitic lavas with which they share some distinctive geochemical characteristics suggestive of a close petrogenetic relationship. The low-Ti tholeiite lavas have been interpreted as island-arc tholeiites but they also resemble back-arc basin basalts. The newly discovered boninites confirm an intra-oceanic environment of eruption; their distinctive features include relatively high SiO2, MgO, Cr and Ni but low Al2O3 and HFSE abundances, U-shaped REE patterns, low TiZr and high ZrHf ratios. Bulk geochemical trends are indicative of low-temperature, seawater-dominated alteration of the lavas but these alteration conditions apparently had little effect on the distribution of critical diagnostic elements such as Zr, Ti, Sc, Ta and the mid-heavy rare earths. We suggest that the Ballantrae boninites and low-Ti tholeiites represent different batch melts derived from a common, depleted mantle source region variably modified compositionally (i.e., made “streaky”) by fluids and/or melts during slab interaction (subduction metasomatism). A contribution from slab-derived pelagic sediments and/or a carbonatite melt is necessary to account for the fractionated, non-chondritic ZrHf ratios in the boninites. In view of the close compositional similarity of the Ballantrae lavas to Cenozoic boninite suites, we believe that these interpretations may have wider application to the petrogenesis of boninites in general.
Details
Publication status:
Published
Author(s):
Authors: Smellie, J.L., Stone, P., Evans, J.
Date:
1 January, 1995
Journal/Source:
Journal of Volcanology and Geothermal Research / 69