Monitoring spatio-temporal variability of the Adour River turbid plume (Bay of Biscay, France) with MODIS 250-m imagery

Increased loads of land-based pollutants through river plumes are a major threat to the coastal water quality, ecosystems and sanitary heath. Identifying the coastal areas impacted by potentially polluted freshwaters is necessary to inform management policies and prevent degradation of the coastal environment. This study presents the first monitoring of the Adour River turbid plume (south-eastern Bay of Biscay, France) using multi-annual MODIS data. Satellite data are processed using a regional algorithm that allows quantifying and mapping suspended matter in coastal waters. The results are used to investigate the spatial and temporal variability of the Adour River turbid plume and to identify the risk of exposure of coastal ecosystems to the turbid plume waters. Changes in river plume orientation and spatial extent as well as suspended matter discharged through the river are correlated to the main hydro-climatic forcings acting in the south-eastern Bay of Biscay. The Adour River turbid plume is shown to be a highly reactive system mainly controlled by the river discharge rates and modulated by the wind changes. Despite the relatively small size of the Adour River, the Adour River turbid plume can have a non-negligible impact on the water quality of the southern Bay of Biscay and the MSM and associated contaminants/nutrients transported within the Adour turbid river plume have the potential to be disseminated far away along the northern shoreline or offshore. The main areas of influence of the river plume are defined over multi-annual (3 years) and seasonal periods. The results presented in this study show the potential of 250-m MODIS images to monitor small river plumes systems and support management and assessment of the water quality in the south-eastern Bay of Biscay.

Details

Publication status:
Published
Author(s):
Authors: Petus, Caroline, Marieu, Vincent, Novoa, Stefani, Chust, Guillem, Bruneau, Nicolas, Froidefond, Jean-Marie

Date:
15 February, 2014
Journal/Source:
Continental Shelf Research / 74
Page(s):
35-49
Link to published article:
https://doi.org/10.1016/j.csr.2013.11.011