Molecular data can help to unveil biogeographic complexities during the Miocene: lessons from ameronothroid mites and isotomid springtails (Extended abstract 008)
The diversification of Antarctic springtails and mites is likely to have occurred as a result of the glaciation and isolation of the Antarctic continent completed by ~10 million years ago, and not by the sequential break-up of Gondwana (completed by ~32 million years ago). More recently, population level structuring is likely to have been driven by the repeated glacial cycles of the
Pleistocene (<2 million years ago) or common circum-polar corridors. It is clear that current taxonomic designations based on morphology for these springtails and mites are in conflict with our molecular topologies. These taxonomic inconsistencies are clear given the large number of paraphyletic species presented here. Our data show clear inconsistencies between the contemporary taxonomy and molecular evidence and we propose a full taxonomic revision for the ‘Cryptopygus’ group, the Halozetes genus, and indeed the larger ameronothroid group where detailed morphological investigations may help to resolve “unexpected” relationships when taking traditional classifications into account.
Details
Publication status:
Published
Author(s):
Authors: van Vuuren, B.J., Mortimer, E., Stevens, M.I., Marshall, D.J., Convey, P. ORCID record for P. Convey, Daniels, S.R., Chown, S.L.
In: Cooper, A.K., Raymond, C.R., ISAES Editorial Team, . (eds.). Antarctica: a keystone in a changing world. Online proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26 - September 1, 2007, National Academy Press, 4.