Long-range dependence and climate noise characteristics of Antarctic temperature data

This study examines the long-range dependency, climate noise characteristics, and nonlinear temperature trends of eight Antarctic stations from the Reference Antarctic Data for Environmental Research (READER) dataset. Evidence is shown that Antarctic temperatures are long-range dependent. To identify possible nonlinear trends, the ensemble empirical mode decomposition (EEMD) method is used, and then the question of whether the observed trends can arise from internal atmospheric fluctuations is examined. To answer this question, surrogate data are generated from two paradigmatic null models: a standard first-order autoregressive process representing a short-range dependent process and a fractional integrated process representing a long-range dependent process. It is found that three of the eight stations show statistically significant trends when tested against the short-range dependent process while only the Faraday-Vernadsky station temperature time series shows a significant trend when tested against the long-range dependent null model. All other considered stations show no trends that are statistically significant against the two null models, and thus they can be explained by internal atmospheric variability. These results imply that more attention should be given to assessing the correlation structure of climate time series.

Details

Publication status:
Published
Author(s):
Authors: Franzke, Christian

Date:
1 January, 2010
Journal/Source:
Journal of Climate / 23
Page(s):
6074-6081
Link to published article:
https://doi.org/10.1175/2010JCLI3654.1