Lithologic mapping in the Oscar II Coast area, Graham Land, Antarctic Peninsula using ASTER data

The results of the first attempt to use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for the purposes of lithologic mapping on the Antarctic Peninsula are presented for an area on the Oscar II Coast, eastern Graham Land. This study included undertaking laboratory reflectance spectroscopy of similar to 70 rock samples from the study area and spectral lithologic analysis of two ASTER scenes. Spectra of the granitoids, silicic volcanic/volcaniclastic and terrestrial sedimentary rocks in the study area display a limited range of absorption features associated with muscovite, smectite and chlorite that are generally present as the alteration products of regional metamorphism. ASTER data analysis was undertaken using the reflective bands of the Level 1B registered radiance at-sensor data and the standard thermal infrared (TIR) emissivity product (AST05). For both wavelength regions, standard qualitative image processing methods were employed to define image end-members that were used as reference within Matched Filter (MF) processing procedures. The results were interpreted with reference to existing field observations, and photogeologic analysis of the ASTER visible to near-infrared (VNIR)/shortwave infrared (SWIR) data was used to resolve ambiguities in the spectral mapping results. The results have enabled the discrimination of most of the major lithologic groups within the study area as well as delineation of hydrothermal alteration zones of propylitic, and argillic grades associated with the Mesozoic Mapple Formation volcanics. The results have extended the mapped coverage of the Mapple Formation into un-investigated regions further north and validated previously inferred geological observations concerning other rocks throughout the study area. The outcomes will enable important revisions to be made to the existing geological map of the Oscar II Coast and demonstrate that ASTER data offers potential for improving geological mapping coverage across the Antarctic Peninsula.

Details

Publication status:
Published
Author(s):
Authors: Haselwimmer, Christian E., Riley, Teal R. ORCIDORCID record for Teal R. Riley, Liu, J.G.

On this site: Teal Riley
Date:
1 January, 2011
Journal/Source:
International Journal of Remote Sensing / 32
Page(s):
2013-2035
Link to published article:
https://doi.org/10.1080/01431161003645824