Global phenological insensitivity to shifting ocean temperatures among seabirds

Reproductive timing in many taxa plays a key role in determining breeding productivity and is often sensitive to climatic conditions. Current climate change may alter the timing of breeding at different rates across trophic levels, potentially resulting in temporal mismatch between the resource requirements of predators and their prey. This is of particular concern for higher-trophic-level organisms, whose longer generation times confer a lower rate of evolutionary rescue than primary producers or consumers. However, the disconnection between studies of ecological change in marine systems makes it difficult to detect general changes in the timing of reproduction. Here, we use a comprehensive meta-analysis of 209 phenological time series from 145 breeding populations to show that, on average, seabird populations worldwide have not adjusted their breeding seasons over time (−0.020 days yr−1) or in response to sea surface temperature (SST) (−0.272 days °C−1) between 1952 and 2015. However, marked between-year variation in timing observed in resident species and some Pelecaniformes and Suliformes (cormorants, gannets and boobies) may imply that timing, in some cases, is affected by unmeasured environmental conditions. This limited temperature-mediated plasticity of reproductive timing in seabirds potentially makes these top predators highly vulnerable to future mismatch with lower-trophic-level resources.

Details

Publication status:
Published
Author(s):
Authors: Keogan, Katharine, Daunt, Francis ORCIDORCID record for Francis Daunt, Wanless, Sarah ORCIDORCID record for Sarah Wanless, Phillips, Richard A., Walling, Craig A., Agnew, Philippa, Ainley, David G., Anker-Nilssen, Tycho, Ballard, Grant, Barrett, Robert T., Barton, Kerry J., Bech, Claus, Becker, Peter, Berglund, Per-Arvid, Bollache, Loïc, Bond, Alexander L., Bouwhuis, Sandra, Bradley, Russell W., Burr, Zofia M., Camphuysen, Kees, Catry, Paulo, Chiaradia, Andre, Christensen-Dalsgaard, Signe, Cuthbert, Richard, Dehnhard, Nina, Descamps, Sébastien, Diamond, Tony, Divoky, George, Drummond, Hugh, Dugger, Katie M., Dunn, Michael J. ORCIDORCID record for Michael J. Dunn, Emmerson, Louise, Erikstad, Kjell Einar, Fort, Jérôme, Fraser, William, Genovart, Meritxell, Gilg, Olivier, González-Solís, Jacob, Granadeiro, José Pedro, Grémillet, David, Hansen, Jannik, Hanssen, Sveinn A., Harris, Mike ORCIDORCID record for Mike Harris, Hedd, April, Hinke, Jefferson, Igual, José Manuel, Jahncke, Jaime, Jones, Ian, Kappes, Peter J., Lang, Johannes, Langset, Magdalene, Lescroël, Amélie, Lorentsen, Svein-Håkon, Lyver, Phil O’B., Mallory, Mark, Moe, Børge, Montevecchi, William A., Monticelli, David, Mostello, Carolyn, Newell, Mark, Nicholson, Lisa, Nisbet, Ian, Olsson, Olof, Oro, Daniel, Pattison, Vivian, Poisbleau, Maud, Pyk, Tanya, Quintana, Flavio, Ramos, Jaime A., Ramos, Raül, Reiertsen, Tone Kirstin, Rodríguez, Cristina, Ryan, Peter, Sanz-Aguilar, Ana, Schmidt, Niels M., Shannon, Paula, Sittler, Benoit, Southwell, Colin, Surman, Christopher, Svagelj, Walter S., Trivelpiece, Wayne, Warzybok, Pete, Watanuki, Yutaka, Weimerskirch, Henri, Wilson, Peter R., Wood, Andrew G., Phillimore, Albert B., Lewis, Sue

On this site: Andrew Wood, Michael Dunn, Richard Phillips
Date:
1 April, 2018
Journal/Source:
Nature Climate Change / 8
Page(s):
313-318
Link to published article:
https://doi.org/10.1038/s41558-018-0115-z