Comparisons of EISCAT and dynasonde ionospheric measurements: simple to moderately structured plasma densities
Plasma densities obtained from EISCAT's UHF incoherent scatter system are compared with profiles inverted from the digital ionograms of a co-located dynasonde. Excellent agreement is found for the bottomside ionosphere when conditions of horizontal stratification and classical photochemical equilibrium prevail. However, departures from such conditions are frequent and intense at Tromsø. Compensating errors of EISCAT calibration and long pulse convolution are resolved by analysis of power profile data. Good agreement is recovered for tilted and more complex ionospheric structure, provided that accurate echo location data are used to confirm a common volume. Monotonic inversion of the ionograms is inadequate. Dynasonde recordings are analysed to show characteristic structure in vertical and horizontal planes as a context for EISCAT measurements along a fixed (magnetic field) direction. Incoherent scatter and modern total reflection sounding, used together and coordinated in one consistent data reduction system, could produce a far more powerful ionospheric diagnostic program than either technique seems capable of providing alone.