Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (ϵapp) for mid- and high-latitude stratospheric samples are (−2.4 ± 0.5) and (−2.3 ± 0.4)‰ for CFC-11, (−12.2 ± 1.6) and (−6.8 ± 0.8)‰ for CFC-12 and (−3.5 ± 1.5) and (−3.3 ± 1.2)‰ for CFC-113, respectively. Assuming a constant source isotope composition, we estimate the expected trends in the tropospheric isotope signature of these gases due to their stratospheric 37Cl enrichment and stratosphere–troposphere exchange. We compare these model results to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978–2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). Model trends agree with tropospheric measurements within analytical uncertainties. From 1970 to the present-day, we find no evidence for variations in chlorine isotope ratios associated with changes in CFC manufacturing processes. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes, using a single-detector gas chromatography-mass spectrometry system.

Details

Publication status:
Published
Author(s):
Authors: Allin, S. J., Laube, J. C., Witrant, E., Kaiser, J., McKenna, E., Dennis, P., Mulvaney, R. ORCIDORCID record for R. Mulvaney, Capron, E. ORCIDORCID record for E. Capron, Martinerie, P., Röckmann, T., Blunier, T., Schwander, J., Fraser, P. J., Langenfelds, R. L., Sturges, W. T.

On this site: Emilie Capron, Robert Mulvaney
Date:
23 June, 2015
Journal/Source:
Atmospheric Chemistry and Physics / 15
Page(s):
6867-6877
Link to published article:
https://doi.org/10.5194/acp-15-6867-2015