Attention-based machine vision models and techniques for solar wind speed forecasting using solar EUV images

Extreme ultraviolet images taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory make it possible to use deep vision techniques to forecast solar wind speed - a difficult, high-impact, and unsolved problem. At a four day time horizon, this study uses attention-based models and a set of methodological improvements to deliver an 11.1% lower RMSE and a 17.4% higher prediction correlation compared to the previous work testing on the period from 2010 to 2018. Our analysis shows that attention-based models combined with our pipeline consistently outperform convolutional alternatives. Our study shows a large performance improvement by using a 30 minute as opposed to a daily sampling frequency. Our model has learned relationships between coronal holes’ characteristics and the speed of their associated high speed streams, agreeing with empirical results. Our study finds a strong dependence of our best model on the phase of the solar cycle, with the best performance occurring in the declining phase.

Details

Publication status:
Published
Author(s):
Authors: Brown, Edward E.J. ORCIDORCID record for Edward E.J. Brown, Svoboda, Filip, Meredith, Nigel P. ORCIDORCID record for Nigel P. Meredith, Lane, Nicholas, Horne, Richard B. ORCIDORCID record for Richard B. Horne

On this site: Edward Brown, Nigel Meredith, Richard Horne
Date:
17 March, 2022
Journal/Source:
Space Weather / 20
Page(s):
19pp
Link to published article:
https://doi.org/10.1029/2021SW002976