A comparison of plasma densities by EISCAT and the Dynasonde from auroral altitudes: evidence of intense structure
Under conditions of moderately-energetic particle precipitation typical of the equatorward side of the auroral oval, plasma densities obtained from routine analysis of EISCAT Common Program data are often a factor 2 to 5 smaller than those suggested by co-located digital ionograms. We consider the reasons for this disagreement, and in particular we reject the implications of diffractive and multiplyrefractive scatter as alternatives to the usual plasma-frequency interpretation of ionogram echoes. We examine the effects of the (5 min and shorter) temporal averaging applied to the EISCAT data and conclude that together with the evidently small size (perhaps as little as 20 km) and high velocity of these structures, this accounts for much, if not all, of the disagreement. We point out the significance of the higher plasma densities in the 100–150 km height range for estimates of Joule and particle heating.